1.石墨刀跟一般刀具有哪些区别?

2.数控机床问题

3.铜公是什么

4.数控机床发展史

5.求CNC、数控车、线切割、火花机工作原理及产品加工特点

广元电火花加工切削油价格多少_广元电火花加工切削油价格

机电一体化实习报告

不知不觉实习阶段已经接近尾声,回想在学校的日子还历历在目.在实习的期间我换了两份工作,在电子厂当过巡检. 在金属制品厂技术部学制图和企业管理. 其间我学到了很多在学校里学不到的东西.

学到的东西也比较广,从纯水的检测到发热片的加工,以及电子元件的质量标准和各种量具的用法.虽然工作并不复杂,可在操作过程中起了很大的作用,避免了很多不必要的损失,在工人们操作的时候加以纠正,传授正确方法,从而使产品质量提高.同时在工作中培养了自身交流能力.促进了工作的效力.这些都是我在灵芝电子里学到的.

离开灵芝主要原因是因为交通不便,后来我来到了离家不远的鑫美金属制品厂.这里工作的环境很好.我和几个同事安排在一间办公室.我主要的工作是整理文件,图纸管理. 最近又帮忙做起里加工进程跟踪.这个厂的历史虽然不过几年时间,但是实力却是不错的.有专业的模具设计人才,先进的生产设备.我平时也会帮忙画画图纸.在学校学到的AUTOCAD现在派上了用场.碰到不会的问题我还可以问我的几位师傅,他们都是专业的制图人员,画图纸又快又好.在他们的用心指导下我可以画很多以前不会画的图纸了.此外,我还知道了不少用于生产的机器.

一,线切割机 车间里有几台线切割机. 它主要用于加工各种形状复杂和精密细小的工件,例如冲裁模的凸模、凹模、凸凹模、固定板、卸料板等,成形刀具、样板、电火花成型加工用的金属电极,各种微细孔槽、窄缝、任意曲线等,具有加工余量小、加工精度高、生产周期短、制造成本低等突出优点,已在生产中获得广泛的应用,目前国内外的电火花线切割机床已占电加工机床总数的60%以上。 根据电极丝的运行速度不同,电火花线切割机床通常分为两类:一类是高速走丝电火花线切割机床(wedm-hs),其电极丝作高速往复运动,一般走丝速度为8~10m/s,电极丝可重复使用,加工速度较高,但快速走丝容易造成电极丝抖动和反向时停顿,使加工质量下降,是我国生产和使用的主要机种,也是我国独创的电火花线切割加工模式;另一类是低速走丝电火花线切割机床(wedm-ls),其电极丝作低速单向运动,一般走丝速度低于0.2m/s,电极丝放电后不再使用,工作平稳、均匀、抖动小、加工质量较好,但加工速度较低,是国外生产和使用的主要机种。

二,冲床 冲床 简单的说 就是一种 冲压的机床 它可以产生一个很强的冲击力 它要和模具配合使用 例如 我要在 一批铁皮上 做出同样的方孔 或其它什么形状的孔 那最好就用 冲床了 首先用硬度大的材料 做出模具 一公一母(上下 模具) 将铁皮放在 公母之间 冲床一冲击 公进入母 铁皮就冲出你要的形状了

三,加工中心 加工中心是指备有刀库,具有自动换刀功能,对工件一次装夹后进行多工序加工的数控机床。加工中心是高度机电一体化的产品,工件装夹后,数控系统能控制机床按不同工序自动选择、更换刀具,自动对刀、自动改变主轴转速、进给量等,可连续完成钻、镗、铣、铰、攻丝等多种工序。因而大大减少了工件装夹时间,测量和机床调整等工序时间,对加工形状比较复杂,精度要求较高,品种更换频繁的零件具有良好的经济效果。 加工中心通常以主轴与工作台相对位置分类,分为卧式、立式和万能加工中心。

(1)卧式加工中心:是指主轴轴线与工作台平行设置的加工中心,主要适用于加工箱体类零件。

(2)立式加工中心:是指主轴轴线与工作台垂直设置的加工中心,主要适用于加工板类、盘类、模具及小型壳体类复杂零件。

(3)万能加工中心(又称多轴联动型加工中心):是指通过加工主轴轴线与工作台回转轴线的角度可控制联动变化,完成复杂空间曲面加工的加工中心。适用于具有复杂空间曲面的叶轮转子、模具、刃具等工件的加工。

2.检验标准

加工中心用的标准是机床工具行业内控标准。主要有JB/GQ1140-89《加工中心精度》,JB/GQ1140-89《加工中心精度附则》,JB/GQ1141-89《加工中心技术条件》。标准规定了加工中心的几何精度和工作精度的要求及检验方法。加工中心检验时还须参照JB2670-82《金属切削机床精度检验通则》和GB9061-88《金属切削机床通用技术条件》等标准进行。

3.检验项目

加工中心按其精度等级可分为普通级和精密级。检验项目一般在30项以上,其细目及检验条件、方法在标准中均有明确规定。一台加工中心全项验收工作是比较复杂的一般需要使用如激光干涉仪、三座标测量机等大型高精度仪器,对机床的机械、电器、液压、气动、微机控制等各部分及整机运行性能检测试验,最后得出对该机的综合技术评价。

(1)几何精度:包括综合反映主轴和工作台的相关和相互位置精度、主轴径跳、端面跳动(窜动)、工作台平面度、回转精度等。

(2)机床定位、重复定位精度:即工作台或主轴运动位置,回转角度的设定值与实际值(实测值)之差或多次测量差值的均值,它是反映机床数控系统的控制、差补精度和机床自身设定的综合指标。

(3)工作精度:是指对代表性工件精加工尺寸进行检验,尺寸精度是对机床几何精度,定位精度在一定切削和加工条件下的综合考核。主要有镗孔精度、平行孔孔距精度、调头镗孔同轴度、铣削四周面精度、圆弧插补铣削精度等。

(4)外观:可参照通用机械相关标准检验,但加工中心由于其单台价格昂贵,外观要求也高于一般机床。

四.磨床 磨床是各类金属切削机床中品种最多的一类,主要类型有外圆磨床、内圆磨床、平面磨床、无心磨床...圆柱、圆锥形内孔表面。普通内圆磨床仅适于单件、小批生产。自动和半自动...

五. 数控机床 模具制造常用的数控加工机床有:数控铣床、数控电火花成型机床、数控电火花线切割机床、数控磨床及数控车床。 数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其他系统组成。 控制系统用于数控机床的运算、管理和控制,通过输入介质得到数据,对这些数据进行解释和运算并对机床产生作用;伺服系统根据控制系统的指令驱动机床,使刀具和零件执行数控代码规定的运动;检测系统则是用来检测机床执行件(工作台、转台、滑板等)的位移和速度变化量,并将检测结果反馈到输入端,与输入指令进行比较,根据其差别调整机床运动;机床传动系统是由进给伺服驱动元件至机床执行件之间的机械进给传动装置;系统种类繁多,如:固定循环(能进行各种多次重复加工)、自动换刀(可交换指定刀具)、传动间隙补偿偿机械传动系统产生的间隙误差)等等。在数控加工中,数控铣削加工最为复杂,需解决的问题也最多。除数控铣削加工之外的数控线切割、数控电火花成型、数控车削、数控磨削等的数控编程各有其特点,本书将重点介绍对数控加工程序编制具有指导意义的数控铣削加工的数控编程。伺服系统的作用是把来自数控装置的脉冲信号,转换成机床移动部件的运动。

六剪板机剪板机的分类

1.按剪刀的形状分类

剪板机按剪刀的形状分为直刀剪板机和圆盘刀剪板机。

直刀剪板机按构造分为龙门剪板机和喉口剪板机。

圆盘刀剪板机按构造分为圆盘剪板机、滚剪机、多圆盘剪板机和旋转式修边剪板机。

2.按刀架的运动轨迹分类

剪板机按刀架的运动轨迹分为以下几种:

(1)刀架沿着垂线运动,如图4—1(a)所示,由于没有前倾角,因此上刀片断面必须加工成菱形,故只有两个刃(四个刃的矩形刀片也可用,但剪切质量差),这种刀架剪切的断口与板面不成直角。

(2)刀架沿着前倾线(与垂线夹角为1°30′~2°)运动,如图4—l(b)所示,上刀片断面可加工成矩形,具有四个刀刃,剪切的断口基本上与板面成直角。

(3)刀架沿着圆弧线摆动,如图4-1(c)所示。剪切刀片断面宜加工成菱形,故只有两个刀刃,由于上刀片在剪切过程中略有前倾,因此剪切质量与刀架沿着前倾线运动的相仿。

(4)刀架沿圆弧线摆动,前倾角可达300,因此可以剪出焊接坡口 3.按传动的方式分类

剪板机按传动的方式分为:机械传动剪板机和液压传动剪扳机

剪板机工作原理及构造

剪板机常用来剪裁直线边缘的板料毛坯。剪切工艺应能保证被剪板料剪切表面的直线性和平行度要求,并尽量减少板材扭曲,以获得高质量的工件。

1.剪扳机工作原理

剪板机工作原理如图4-2所示,上刀片1固定在刀架2上,下刀片3固定在下床面4上,床面上安装有托球5,以便于板料6的送进移动,后挡料板7用于板料定位,位置由调位销8进行调节。液压压料筒9用于压紧板料,以防止板料在剪切时翻转。棚板10是安全装置,以防止发生工伤事故。

七数控折弯机 本机适用于大型钢结构件,铁塔、路灯杆、高灯杆、汽车大梁、汽车车货箱等相关行业。WE67Yk系列数控折弯机的特点:

主要用WE67YK系列板料折弯机结构;由SDS-3PB折弯机全闭环数控系统、两把光栅尺、一个光电编码器实时检测反馈,步进电机驱动丝杆组成全闭环控制。两把光栅尺;一把对后挡料、一把对滑块的位置实时检测反馈纠正;光电编码器对油缸死挡块的位置进行检测反馈给数控系统。 1、直接进行角度编程,具有角度补偿功能。

2、光栅尺实时检测反馈校正、全闭环控制、后挡料和滑块死挡料定位精度为?0.02mm。

3、上模用快速夹紧装置,下模用斜楔变形补偿机构。

4、具有多工步编程功能,可实现多自动运行,完成多工步零件一次性加工,提高生产效率。

5、根据用户需求可选用性能稳定,结构紧凑的进口液压系统、后挡料可选用滚珠丝杆、同步带传动。

此外还有很多工具我暂时还不了解.现在的工业发展越来越快,在不久的将来中国一定更加发达.

我们读的“机电一体化”在国外被称为Mechatronics是日本人在20世纪70年代初提出来的,它是用英文Mechanics的前半部分和Electron-ics的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合。

这一名称已得到包括我国在内的世界各国的承认,我国的工程技术人员习惯上把它译为机电一体化技术。机电一体化技术又称为机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。1. 我国用微电子技术改造传统工业的工作量大而广,有难度

2. 我国用机电一体化技术加速产品更新换代,提高市场占有率的呼声高,有压力。

3. 我国用机电一体化产品取代技术含量和附加值低,耗能、耗水、耗材高,污染、扰民产品的责任重,有意义。在我国工业系统中,能耗、耗水大户,对环境污染严重的企业还占相当大的比重。近年来我国的工业结构、产品结构虽然几经调整,但由于多种原因,成效一直不够明显。这里面固然有上级领导部门的政出多门问题,有企业的“故土难离”“死守故业”问题,但不可否认也有优化不出理想的产业,优选不出中意的产品问题。上佳的答案早就摆在了这些企业的面前,这就是发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。这是解决机电产品多品种、少批量生产的重要出路。同时,可为传统的机械工业注入新鲜血液,带来新的活力,把机械生产从繁重的体力劳动中解脱出来,实现文明生产。

另外,从市场需求的角度看,由于我国研制、开发机电一体化产品的历史不长,差距较大,许多产品的品种、数量、档次、质量都不能满足需求,每年进口量都比较大,因此亟需发展。

(二) 我国“机电一体化”工作的任务

我国在机电一体化方面的任务可以概括为两句话:一句话是广泛深入地用机电一体化技术改造传统产业;另一句话是大张旗鼓地开发机电一体化产品,促进机电产品的更新换代。总的目的是促进机电一体产业的形成、为我国产业结构和产品结构调整作贡献。

总之,机电一体化技术既是振兴传统机电工业的新鲜血液和源动力,又是开启我国机电行业产品结构、产业结构调整大门的钥匙。

六、我国发展“机电一体化”的对策

(一)加强统筹安排,协调发展

目前,我国从事“机电一体化”研究开发及生产的单位很多。各自都有一套自己的发展策略。各单位的由于受各自立足点、着眼点的限制,难免只考虑局部利益,各主管部门的有关和规划,也有统一考虑不足,统筹安排不够的问题,同时缺少综观全局的有权威性的发展和战略规划。因此,建议各主管部门责成有关单位在进行深入调查研究、科学分析的基础上,制定出统管全局的“机电一体化”研究、开发、生产和规划,避免开发上重复,生产上撞车!

(二)强化行业管理,发挥“协会”作用

目前,我国“机电一体化”较热,而按目前的行业划分方法和管理体制,“政出多门”是难哆的。因此,我国有必要明确一个“机电一体化”行业的统管机构,根据目前国家政治体制改革和经济体制改革的精神,以及机电一体化行业特点,我们建议,尽快加强北京机电一体化协会的建设,赋予其行业管理职能。“协会”要进一步扩大领导机构——理事会的代表层面和复盖面,要加强办公室、秘书处的建设;要通过其精明干练的办事机构、经济实体,组织“行业”发展、战略规划的拟制;指导行业布点布局的调整,进行发展突破口的选择,抓好重点工程的试点和有关项目的发标、招标工作……

(三)优化发展环境、增大支持力度

优化发展环境指通过宣传群众,造成一种社会上下、企业内外都重视、支持“机电一体化”发展的氛围,如尽快为外商到我国投资发展“机电一体化”产业提供方便;尽可能为兴办开发、生产机电一体化产品的高新技术企业开绿灯;尽力为开发、生产机电一体化产品调配好要素等。

增大支持力度,在技术政策上,要严格限制耗电、耗水、耗材高的传统产品的发展,对未用机电一体化技术落后产品限制强制淘汰;大力提倡用机电一体化技术对传统产业进行改造,对有关机电一体化技术对传统产业乾地改造,对有关技术开发、应用项目优先立项、优先支持,对在技术开发、应用中做出贡献的单位领导、科技人员进行表彰奖励等。

(四)突出发展重点,兼顾“两个层次”

机电一体化产业复盖面非常广,而我们的财力、人力和物力是有限的,因此我们在抓机电一体化产业发展时不能面面俱到、平铺直叙,而应分清主次,大胆取舍,有所为,有所不为。要注意抓两个层次上的工作。第一个层次是“面上”的工作,即用电子信息技术对传统产业进行改造,在传统的机电设备上植入或嫁接上微电子(计算机)装置,使“机械”和“电子”技术在浅层次上结合。第二个层次是“提高”工作,即在新产品设计之初,就把“机械”与“电子”统一起来进行考虑,使“机械”与“电子”密不可分,深度结合,生产出来的新产品起码正做到机电一体化。

在今年的3月底,我开始从事学做紫砂茶壶,在我们宜兴这边就这出名,家里爸爸还有好多亲戚也从事这项行业,做的好的话工资大大超过白龄,在我们这学这门手艺的人数不胜数,但能学出来的了了无几,开始我和朋友们说要学茶壶时,他们还都笑话我,因为我平时喜欢玩,没耐心,根本坐不住,开始我也害怕,怕自己学不成,但毕竟将来得自己生活,一切得靠自己,父母不会养我一辈子,因此我也下定决心要学好这门手艺,到今天已经学了一个多月了,每天早早的去,一坐就是一天,但环境还不错,每天过去先喝喝茶,听师傅们讲讲这方面知识,培养自己兴趣爱好,干活干累了打打乒乓球,每天过的还蛮充实,不枯燥。茶壶这东西学起来真是看似简单,做了就难了,要不都是工艺师,茶壶都不值钱了,我打算给自己一年时间学出来,已经走上这条路了,我会坚持下去,不会半途而废,在学校读书读不好,但学东西不相信自己会学不出来,我会努力.

石墨刀跟一般刀具有哪些区别?

随着现代科学技术的高速发展,由聚晶金刚石(PCD)、聚晶立方氮化硼(PCBN)等超硬材料制成的刀具品种越来越丰富,其性能也得到不断发展和提高。刀片磨料粒径从数十微米、几微米到纳米级;金刚石、立方氮化硼的含量分为低含量、中等含量和高含量;结合剂既有金属、非金属也有混合材料;PCD层厚度从毫米级到微米级;PCD层与硬质合金衬底的结合方式有平面、波纹面;PCD层有高耐磨、高韧性、高耐热等不同特性。目前PCD、PCBN刀具的应用范围扩大到汽车、航天航空、精密机械、家电、木材、电子电气等行业,用于制作车刀、镗刀、铣刀和钻头、铰刀、锪刀、锯刀、镂刀、剃刀等。

尽管PCD、PCBN刀具发展如此之快,但因其高硬度导致的刀具刃磨困难一直困扰着大多数用户,刀片的重磨也主要由原刀具生产厂家来完成。不仅刀具价格高,交货期长,而且占用企业流动资金。因此,很有必要认真研究PCD的磨削特点及PCD刀具的刃磨技术。 PCD切削刀具的生产工艺流程一般包括抛光、切割、固接、刃磨、质检等。PCD超硬材料毛坯直径通常有1/2、1、2、3、4英寸,其表面一般较粗糙(Ra2-10μm),不能直接用于制作刀具,需经研磨抛光使其表面达到镜面(Ra≤0.01μm),然后通过激光切割或电火花线切割加工成一定几何形状和尺寸要求的刀片,再进一步对刀片和基体待固接面进行机械和化学处理,然后用银基硬钎焊将刀片固接于基体上,最后经金刚石砂轮刃磨。

PCD切削刀具制造技术的关键之一是切削刃的刃磨质量。优质刀头材料缺乏理想的刃磨工艺和技术将会造成浪费,用好的刃磨工艺则会提升刀具的产品质量,降低刀具使用成本。 PCD是由特殊处理的金刚石与少量粘结剂在高温超高压下烧结而成。无序排列的金刚石晶粒使PCD具有均匀的、极高的硬度和耐磨性。PCD可用于切削刀具、砂轮修整、地质钻探、量具测头、拉丝摸具、喷砂摸具等。但是PCD的高硬度和高耐磨性也给其加工带来了很大困难。

国内外学者针对PCD材料的高硬度和高耐磨性所带来的加工难题进行了大量的研究和试验,其中包括电火花加工、超声波加工、电化学加工、激光加工等,并取得了一定效果。但综合分析发现,这些加工技术目前多适用于PCD材料的粗加工场合。要想获得好的PCD切削刃口质量,最理想的加工方法仍是用金刚石砂轮磨削或研磨。

PCD的磨削加工主要是机械和热化学两方面混合作用的结果。机械作用是通过金刚石砂轮磨粒对PCD材料的不断冲击而形成的金刚石的微破碎、磨损、脱落或解理;热化学作用则是金刚石砂轮磨削PCD形成的高温使金刚石发生氧化或石墨化。二者混合作用的结果致使PCD材料被去除。其磨削加工特点主要为:

⑴磨削力很大

金刚石是已知矿物中硬度最高的物质,与各种金属、非金属材料配对摩擦的磨损量仅为硬质合金的1/50-1/800;PCD的硬度(HV)为80-120KN/mm2,仅次于单晶金刚石,远高于硬质合金。用金刚石砂轮磨削PCD时,起始切削强度很高,约为硬质合金(0.4MPa)的10倍以上;比磨削能达1.2×104-1.4×105J/mm3;因此磨削力远高于磨削硬质合金。

⑵磨削比很小

由于PCD的硬度和耐磨性很高(相对耐磨性为硬质合金的16-199倍),磨削PCD时其磨削比仅为0.005-0.033,约为硬质合金的1/1000-1/100000;磨削效率仅0.4-4.8mm3/min。因此,为了保证切削刀具的刃口质量和去除量,磨削时间很长、加工效率很低。此外,当PCD的硬度、含量、粒度不同时,其磨削时间也相差悬殊。

⑶粒度影响很大

PCD材料用于切削刀具按粒度主要分为三类:粗粒度(20-50μm)、中粒度(10μm左右)和细粒度(-5μm),其磨削力、磨削比相差几倍至数十倍。粗粒度PCD磨削比最高,磨削也最困难,且磨削后刃口锯齿状最严重、质量最差,但耐磨性最强;细粒度PCD磨削比相对最低,磨削较易、磨削后刃口质量最好。 基于PCD的上述磨削特点,用金刚石砂轮磨削加工PCD时对刃磨设备的要求比一般工具磨床高得多。主要有:

⑴机床具有良好的工艺系统刚性

由于PCD材料硬度很高,因此磨床必须有较高的抗变形能力,特别是主轴系统和刀具装夹系统。PCD切削刀具刃磨时磨削力一般达100-500N。因此要求机床的轴径大、轴承的轴向刚性和强度要高。

⑵机床具有行程可调和速度可调的短程摆动机构

PCD磨削比极低,PCD的磨削加工机理主要是通过金刚石砂轮对PCD材料的不断冲击而形成的微破碎、磨损、脱落、解理等机械作用和氧化、石墨化热化学作用混合的结果。因此用短程摆动机构有利于提高磨削效率,改善刀具刃口质量。一般摆动距离0-50mm,摆动速度20-60次/分。

⑶机床的刀夹具有高精度回转功能和在线检测装置

由于PCD材料硬脆而耐磨,通常将其刀尖设计为圆弧状,以减小刀具和工件相对振动的幅值。为了实现刀尖圆弧的加工,机床的刀夹应具有高精度回转功能和刀尖圆弧半径尺寸与质量在线检测装置。这样可避免多次装夹带来的定位误差,同时可成倍提高加工效率。 ⒌1 刃磨工艺的选择

切削刀具刃磨的目的之一是获取性价比高的切削刃口质量,而质量好坏的关键在于刃磨砂轮粒度的选择。砂轮粒度越细,切削刃崩口越小,而磨削效率越低。为此可根据刀具切削刃的精度、用途(见表1)或其失效程度(见表2),将PCD切削刀具刃磨工艺分为粗、精、细三个加工阶段。根据具体情况制订合理刃磨工艺可大幅度提高加工效率。

粗加工对刃口要求不高,可选电加工或磨削加工。电加工效率高,宜用于加工复杂刀具,如印刷电路板用钻头、切削强化木地板用成型铣刀等。磨削加工时可选粗粒度砂轮,刃磨时接触面积大、磨削力高(300-400N),可快速去除多余的加工余量;细加工时选用细粒度砂轮,刃磨时接触面积小、磨削力低(100-200N)、磨削发热量少,但材料去除率低。此阶段主要是通过研磨和抛光,进一步改善切削刃口质量。精加工居于二者之中。

⒌2 刃磨工艺要点

⑴主轴精度要好,一般砂轮端面跳动应≤0.02mm。砂轮端面跳动过大,磨削时砂轮断续冲击切削刃,容易使切削刃发生崩口,难以获得高精度切削刃。

⑵砂轮应具有良好的动平衡。砂轮的不平衡将导致机床的振动,进而影响被加工刀具的刃口质量和加工精度。

⑶刃磨砂轮应优先选用陶瓷结合剂金刚石砂轮。因为在磨削过程中陶瓷结合剂易发生微裂使磨粒得到更新自锐,使磨削过程平稳,有利于提高加工表面的精度和效率;次之可选耐热性较高的树脂结合剂金刚石砂轮。

⑷适时注意砂轮开刃,且开刃油石粒度要合适。用金刚石砂轮加工PCD刀具时,砂轮会发生堵塞、钝化、高温和快速磨损,导致加工速度降低和振纹、噪音、烧伤的产生。通常选择比所用砂轮粒度细1-2号的软碳化硅油石作为开刃油石。

⑸因金刚石易与铁系合金发生化学扩散,加速砂轮磨损,因此应尽可能避免同时磨削金属与PCD。

⑹砂轮回转方向务必从刀具前刀面向后刀面回转。从磨削时PCD 刀具切削刃的受力可知,当砂轮从刀具前刀面向后刀面回转时,其磨削力(切向与法向力之和)作用于切削刃向内,即刀具受压应力,不易崩刀;反之则为拉应力,切削刃易崩口。若因刀具结构原因必须反转刃磨时,则选用树脂结合剂砂轮优于金属和陶瓷结合剂砂轮。

⑺为了保证切削刃质量同时提高刃磨效率,可将刀具的后角分为大后角和小后角。用粗粒度砂轮先磨大后角,因接触面大磨削力大,刃磨效率高;然后用细粒度砂轮刃磨小后角,将小后角的刃带宽度控制在0.1-0.3mm左右,接触面小刃磨质量好。

⑻尽可能在一次装夹中完成对刀具切削刃的加工。

⑼PCD刃磨冷却液应优选水基磨削液。由于PCD材料硬度高且耐热性差,水基磨削液冷却效果优于油基磨削液,可提高加工效率和刃口质量。另外磨削过程中冷却要充分,不能断流,避免因磨削液量小或断续供给造成金刚石(砂轮、刀具)的大量消耗(氧化、石墨化)和刀具的刃口破损。

数控机床问题

石墨电极与铜电极相比具有电极消耗小、加工速度快、机械加工性能好、加工精度高、热变形小、重量轻、表面处理容易、耐高温、加工温度高、电极可粘结等优点。尽管石墨是一种非常容易切削的材料,但由于用作EDM电极的石墨材料必须具有足够的强度以免在操作和EDM加工过程中受到破坏,同时电极形状(薄壁、小圆角、锐变)等也对石墨电极的晶粒尺寸和强度提出较高的要求,这导致在加工过程中石墨工件容易崩碎,刀具容易磨损。

选择刀具时几点事项:

1、刀具材料

刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。刀具材料越硬,其耐磨性越好,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。对于石墨刀具,普通的TiAlN涂层可在选材上适当选择韧性相对较好一点的,也就是钴含量稍高一点的;对于金刚石涂层石墨刀具,可在选材上适当选择硬度相对较好一点的,也就是钴含量稍低一点的;

2、刀具的几何角度

石墨刀具选择合适的几何角度,有助于减小刀具的振动,反过来,石墨工件也不容易崩缺;

(1)前角,用负前角加工石墨时,刀具刃口强度较好,耐冲击和摩擦的性能好,随着负 前角绝对值的减小,后刀面磨损面积变化不大,但总体呈减小趋势,用正前角加工时,随着前角的增大,刀具刃口强度被削弱,反而导致后刀面磨损加剧。负前角加工时,切削阻力大,增大了切削振动,用大正前角加工时,刀具磨损严重,切削振动也较大。

(2)后角,如果后角的增大,则刀具刃口强度降低,后刀面磨损面积逐渐增大。刀具后角过大后,切削振动加强。

(3)螺旋角,螺旋角较小时,同一切削刃上同时切入石墨工件的刃长最长,切削阻力最大,刀具承受的切削冲击力最大,因而刀具磨损、铣削力和切削振动都是最大的。当螺旋角去较大时,铣削合力的方向偏离工件表面的程度大,石墨材料因崩碎而造成的切削冲击加剧,因而刀具磨损、铣削力和切削振动也都有所增大。

因此,刀具角度变化对刀具磨损、铣削力和切削振动的影响是前角、后角及螺旋角综合产生的,所以在选择方面一定要多加注意。

3、刀具的涂层

金刚石涂层刀具的硬度高、耐磨性好、摩擦系数低等优点,现阶段金刚石涂层是石墨加工刀具的最佳选择,也最能体现石墨刀具优越的使用性能;金刚石涂层的硬质合金刀具的优点是综合了天然金刚石的硬度和硬质合金的强度及断裂韧性;但是在国内金刚石涂层技术还处于起步阶段,还有成本的投入都是很大的,所以金刚石涂层在近期不会有太展,不过我们可以在普通刀具的基础上,优化刀具的角度,选材等方面和改善普通涂层的结构,在某种程度上是可以在石墨加工当中应用的。

4、刀具刃口的强化

刀具刃口钝化技术是一个还不被人们普遍重视,而又是十分重要的问题。金刚石砂轮刃磨后的硬质合金刀具刃口,存在程度不同的微观缺口(即微小崩刃与锯口)。石墨高速切削加工刀具性能和稳定性提出了更高的要求,特别是金刚石涂层刀具在涂层前必须经过刀口的钝化处理,才能保证涂层的牢固性和使用寿命。刀具钝化目的就是解决上述刃磨后的刀具刃口微观缺口的缺陷,使其锋值减少或消除,达到圆滑平整,既锋利坚固又耐用的目的。

5、刀具的机械加工条件

选择适当的加工条件对于刀具的寿命有相当大的影响。

(1)切削方式(顺铣和逆铣),顺铣时的切削振动小于逆铣的切削振动。顺铣时的刀具切入厚度从最大减小到零,刀具切入工件后不会出现因切不下切屑而造成的弹刀现象,工艺系统的刚性好,切削振动小;逆铣时,刀 具的切入厚度从零增加到最大,刀具切入初期因切削厚度薄将在工件表面划擦一段路径,此时刃口如果遇到石墨材料中的硬质点或残留在工件表面的切屑颗粒,都将引起刀具的弹刀或颤振,因此逆铣的切削振动大;

(2)吹气(或吸尘)和浸渍电火花液加工,及时清理工件表面的石墨粉尘,有利于减小刀具二次磨损,延长刀具的使用寿命,减少石墨粉尘对机床丝杠和导轨的影响;

(3)选择合适的高转速及相应的大进给量。

综述以上几点,刀具的材料、几何角度、涂层、刃口的强化及机械加工条件,在刀具的使用寿命中扮演者不同的角色,缺一不可,相辅相成的。一把好的石墨刀具,应具备流畅的石墨粉排屑槽、长的使用寿命、能够深雕刻加工、能节约加工成本。

铜公是什么

线切割是一种电加工机床,靠钼丝通过电腐蚀切割金属(特别是硬材料、行状复杂零件)。

电火花线切割加工(Wire cut Electrical Discharge Machining,简称WEDM),有时又称线切割。其基本工作原理是利用连续移动的细金属丝(称为电极丝)作电极,对工件进行脉冲火花放电蚀除金属、切割成型。它主要用于加工各种形状复杂和精密细小的工件,例如冲裁模的凸模、凹模、凸凹模、固定板、卸料板等,成形刀具、样板、电火花成型加工用的金属电极,各种微细孔槽、窄缝、任意曲线等,具有加工余量小、加工精度高、生产周期短、制造成本低等突出优点,已在生产中获得广泛的应用,目前国内外的电火花线切割机床已占电加工机床总数的60%以上。

根据电极丝的运行速度不同,及加工质量不同,电火花线切割机床通常分为三类:第一类是高速走丝电火花线切割机床(WEDM-HS),其电极丝作高速往复运动,一般走丝速度为8~10m/s,电极丝可重复使用,加工速度较高,但快速走丝容易造成电极丝抖动和反向时停顿,使加工质量下降,是我国生产和使用的主要机种,也是我国独创的电火花线切割加工模式;第二类是低速走丝电火花线切割机床(WEDM-LS),其电极丝作低速单向运动,一般走丝速度低于0.2m/s,电极丝放电后不再使用,工作平稳、均匀、抖动小、加工质量较好,但加工速度较低,是国外生产和使用的主要机种。第三类中速走丝电火花线切割机床,准确地应该叫“多速走丝”。是我国独创的,其原理是对工件作多次反复的切割,开头用较快丝筒速度、较强高频来切割,就如现在的快走丝线切割,最后一刀用较慢丝筒速度、较弱高频电流来修光,从而提高了加工光洁度;而且丝速减低后,导轮和轴承的抖动少了,加工精度也提高了;另外,第一刀以最快的速度切割,后来的切割和修光的切割量都非常少,因此,一般三刀切割的时间加起来也比快走丝的一刀切割要快。

根据对电极丝运动轨迹的控制形式不同,电火花线切割机床又可分为三种:一种是*模仿形控制,其在进行线切割加工前,预先制造出与工件形状相同的*模,加工时把工件毛坯和*模同时装夹在机床工作台上,在切割过程中电极丝紧紧地贴着*模边缘作轨迹移动,从而切割出与*模形状和精度相同的工件来;另一种是光电跟踪控制,其在进行线切割加工前,先根据零件图样按一定放大比例描绘出一张光电跟踪图,加工时将图样置于机床的光电跟踪台上,跟踪台上的光电头始终追随墨线图形的轨迹运动,再借助于电气、机械的联动,控制机床工作台连同工件相对电极丝做相似形的运动,从而切割出与图样形状相同的工件来;再一种是数字程序控制,用先进的数字化自动控制技术,驱动机床按照加工前根据工件几何形状参数预先编制好的数控加工程序自动完成加工,不需要制作模样板也无需绘制放大图,比前面两种控制形式具有更高的加工精度和广阔的应用范围,目前国内外95%以上的电火花线切割机床都已用数控化。

线切割属电加工范畴,是由前苏联人发明的,我国是第一个用于工业生产的国家,当时由复旦大学和苏州长风机械厂合作生产的这是最早的机型叫复旦型,我们国内在此基础上发展了快走丝系统(HS).欧美和日本发展了慢走系统(LS).

主要区别是1,电极丝我国用钨钼合金丝,国外用黄铜丝; 2,我国用皂化工作液,国外用去离子水; 3,我国的走丝速度为11米/秒左右,国外为3~5米/分, 4,我们的电极丝是重复利用的直到断丝为至,国外是走过后不再重用, 5,我们的精度不如国外高.

3B编程

BX BY BJ GX(GY) 指令代码 如 B1000 B1000 B10000 GX L1 数值为微米单位!!

以上是标准格式.B是间隔符号而已!GX GY 指的是计数长度方向.指令代码有L1,L2,L3,L4.这几个代表1-4象限直线且L1为X正向,L2为Y正向,L3为X负向,L4为Y负向.SR1,SR2,SR3,SR4,NR1,NR2,NR3,NR4,表示四个象限顺圆逆圆.直线编程X,Y代表以起点为原点的终点坐标, J为计数长度,计数长度方向为直线在X,Y轴投影大的为计数方向投影为 J值.计数长度在编圆是反之.编圆是以起点为原点,X,Y为圆心坐标,投影长度为所有圆弧投影总和,取小值!指令按起点的算!以上所有值为绝对值!注意坐标原点是变化的这里有个相对坐标绝对坐标的问题,每个线段都对应一个坐标!以上为代码格式,具体操作时还得考虑补偿问题,就不说了只是用三角函数而已!

数控电火花线切割机床既是数控机床,又是特种加工机床,它区别于传统机床部分是:

1.数控装置和伺服系统,

2.不是依靠机械能通过刀具切削工件,而是以电、热能量形式来加工。

电火花加工在特种加工中是比较成熟的工艺。

在民用,国防生产部门和科学研究中已经获得了广泛应用,其机床设备比较定型,且类型较多,但按工艺过程中工具与工件相对运动的特点和用途等来分,大致可以分为六大类,其中应用最广,数量较多的是电火花成型加工机床和电火花线切割机床。我们这里介绍电火花线切割机床。

电火花线切割加工是在电火花加工基础上用线状电极(钼丝或铜丝)靠火花放电对工件进行切割,故称为电火花线切割,有时简称线切割。

控制系统是进行电火花线切割加工的重要组成部分,控制系统的稳定性、可靠性、控制精度及自动化程度都直接影响到加工工艺指标和工人的劳动强度。

一.数控加工和特种加工机床的种类

数控加工机床分类有两种方法:

1.按控制系统分类有点位控制、直线控制、连续控制三种,

2.按伺服系统分类有开环、半闭环、闭环控制系统。

传统的切削加工方法主要依靠机械能来切除金属材料或非金属材料。随着工业生产和科学技术的发展,产生了多种利用其他能量形式进行加工的特种加工方法,主要是指直接利用电能、化学能、声能和光能等来进行加工的方法。在此,机械能以外的能量形式的应用是特种加工区别于传统加工的一个显著标志。

新的能量形式直接作用于材料,使得加工产生了诸多特点,例如,加工用的工具硬度不必大于被加工材料的硬度,这就使得高硬度、高强度、高韧性材料的加工变得容易;又如,在加工过程中,工具和工件之间不存在显著的机械切削力,从而使微细加工成为可能。正是这些特点,促使特种加工方法获得了很大的发展,目前已广泛应用于航空航天、电子、动力、电器、仪表、机械等行业。

特种加工种类主要按其能量来源和工作原理的不同分类,主要有:

电、热能:电火花加工,电子束加工,等离子束加工;

电、机械能:离子束加工;

电、化学能:电解加工、电解抛光;

电、化学、机械能:电解磨削、电解珩磨、阳极机械磨削;

光、热能:激光加工;

化学能:化学加工、化学抛光;

声、机械能:超声波加工;

机械能:磨料喷射加工、磨料流加工、液体喷射加工。

电子束和离子束加工以及同时用几种加工方式的复合加工。

二.电火花线切割加工原理和必备条件

电火花线切割加工是利用工具电极(钼丝)和工件两极之间脉冲放电时产生的电腐蚀现象对工件进行尺寸加工。电火花腐蚀主要原因:两电极在绝缘液体中靠近时,由于两电极的微观表面是凹凸不平,其电场分布不均匀离得最近凸点处的电场度最高,极间介质被击穿,形成放电通道,电流迅速上升。在电场作用下,通道内的负电子高速奔向阳极,正离子奔向阴极形成火花放电,电子和离子在电场作用下高速运动时相互碰撞,阳极和阴极表面分别受到电子流和离子流的轰击,使电极间隙内形成瞬时高温热源,通道中心温度达到10000度以上。以致局部金属材料熔化和气化。

电火花线切割加工能正常运行,必须具备下列条件:

1.钼丝与工件的被加工表面之间必须保持一定间隙,间隙的宽度由工作电压 、加工量等加工条件而定。

2.电火花线切割机床加工时,必须在有一定绝缘性能的液体介质中进行,如煤油、皂化油、去离子水等,要求教高绝缘性是为了利于产生脉冲性的火花放电,液体介质还有排除间隙内电蚀产物和冷却电极作用。钼丝和工件被加工表面之间保持一定间隙,如果间隙过大,极间电压不能击穿极间介质,则不能产生电火花放电;如果间隙过小,则容易形成短路连接,也不能产生电火花放电。

3.必须用脉冲电源,即火花放电必须是脉冲性、间歇性,图1中ti为脉冲宽度、to为脉冲间隔、tp为脉冲周期。在脉冲间隔内,使间隙介质消除电离,使下一个脉冲能在两极间击穿放电。

我也是数控专业的,朋友你说的T54之类说实话我没听说过,至于T1,T2之类是数控车编程换刀时的刀具代号。

比如T0101就是说换1号刀并且取1号刀补。

G代码

组别

用于数控车的功能

用于数控铣的功能

附注

G00

01

快速点定位

相同

模态

G01

01

直线插补

相同

模态

G02

01

顺时针方向圆弧插补

相同

模态

G03

01

逆时针方向圆弧插补

相同

模态

G04

00

暂停

相同

非模态

G10

00

数据设置

相同

模态

G11

00

数据设置取消

相同

模态

G17

16

XY平面选择

相同

模态

G18

16

ZX平面选择

相同

模态

G19

16

YZ平面选择

相同

模态

G20

06

英制

相同

模态

G21

06

米制

相同

模态

G22

09

行程检查开关打开

相同

模态

G23

09

行程检查开关关闭

相同

模态

G25

08

主轴速度波动检查打开

相同

模态

G26

08

主轴速度波动检查关闭

相同

模态

G27

00

参考点返回检查

相同

非模态

G28

00

参考点返回

相同

非模态

G30

00

第二参考点返回

×

非模态

G31

00

跳步功能

相同

非模态

G32

00

螺纹切削

×

模态

G36

00

X向自动刀具补偿

×

非模态

G37

00

Z向自动刀具补偿

×

非模态

G40

07

刀尖补偿取消

刀具半径补偿取消

模态

G41

07

刀尖左补偿

刀具半径左补偿

模态

G42

07

刀尖右补偿

刀具半径右补偿

模态

G43

17

×

刀具长度正补偿

模态

G44

17

×

刀具长度负补偿

模态

G49

17

×

刀具长度补偿取消

模态

G50

00

工件坐标原点设定,最大主轴速度设置

×

非模态

G52

00

局部坐标系设置

相同

非模态

G53

00

机床坐标系设置

相同

非模态

G54

14

第一工件坐标系设置

相同

模态

G55

14

第二工件坐标系设置

相同

模态

G56

14

第三工件坐标系设置

相同

模态

G57

14

第四工件坐标系设置

相同

模态

G58

14

第五工件坐标系设置

相同

模态

G59

14

第六工件坐标系设置

相同

模态

G65

00

宏程序调用

相同

非模态

G66

12

宏程序调用模态

相同

模态

G67

12

宏程序调用取消

相同

模态

G68

04

双刀架镜像打开

×

非模态

G69

04

双刀架镜像关闭

×

非模态

G70

01

精车循环

×

非模态

G71

01

外圆/内孔粗车循环

×

非模态

G72

01

模型粗车循环

×

非模态

G73

01

端面粗车循环

高速深孔钻孔循环

非模态

G74

01

端面啄式钻孔循环

左旋攻螺纹循环

非模态

G75

01

外径/内径啄式钻孔循环

×

非模态

G76

01

螺纹车削多次循环

精镗循环

非模态

G80

01

固定循环注销

相同

模态

G81

01

×

钻孔循环

模态

G82

01

×

钻孔循环

模态

G83

01

端面钻孔循环

深孔钻孔循环

模态

G84

01

端面攻螺纹循环

攻螺纹循环

模态

G85

01

×

粗镗循环

模态

G86

01

端面镗孔循环

镗孔循环

模态

G87

01

侧面钻孔循环

背镗孔循环

模态

G88

01

侧面攻螺纹循环

×

模态

G89

01

侧面镗孔循环

镗孔循环

模态

G90

01

外径/内径车削循环

绝对尺寸

模态

G91

01

×

增量尺寸

模态

G92

01

单次螺纹车削循环

工件坐标原点设置

模态

G94

01

端面车削循环

×

模态

G96

02

恒表面速度设置

×

模态

G

02

恒表面速度设置

×

模态

G98

05

每分钟进给

×

模态

G99

05

每转进给

×

模态

M代码

用于数控车的功能

用于数控铣的功能

附注

M00

程序停止

相同

非模态

M01

停止

相同

非模态

M02

程序结束

相同

非模态

M03

主轴顺时针旋转

相同

模态

M04

主轴逆时针旋转

相同

模态

M05

主轴停止

相同

模态

M06

×

换刀

非模态

M08

切削液开

相同

模态

M09

切削液关

相同

模态

M10

接料器前进

×

模态

M11

接料器退回

×

模态

M13

1号压缩空气吹管打开

×

模态

M14

2号压缩空气吹管关闭

×

模态

M15

压缩空气吹管关闭

×

模态

M17

2轴变换

×

模态

M18

3轴变换

×

模态

M19

主轴定向

×

模态

M20

自动上料器工作

×

模态

M30

程序结束并返回

相同

非模态

M31

互锁旁路

相同

非模态

M38

右中心架夹紧

×

模态

M39

右中心架松开

×

模态

M50

棒料送料器夹紧并前进

×

模态

M51

棒料送料器夹松开并退回

×

模态

M52

自动门打开

相同

模态

M53

自动门关闭

相同

模态

M58

左中心架夹紧

×

模态

M59

左中心架松开

×

模态

M68

液压卡盘夹紧

×

模态

M69

液压卡盘松开

×

模态

M74

错误检查功能打开

相同

模态

M75

错误检查功能关闭

相同

模态

M78

尾架套筒送进

×

模态

M79

尾架套筒退回

×

模态

M88

主轴低压夹紧

×

模态

M89

主轴高压夹紧

×

模态

M90

主轴松开

×

模态

M98

子程序调用

相同

模态

M99

子程序调用返回

相同

模态

此外F是进给速度,S转速。

朋友你是不是才大一啊,怎么感觉对数控方面一点都不懂。哈,我都毕业了。下面的网址是G代码与M代码的的知识,是表格形式的,更方便你打印。

呵呵,朋友先谢谢你的高分啊,别忘了给我啊!

数控机床发展史

问题一:什么是铜公? 广州人叫铜公,这个又叫电极,这个分粗公和幼公,做叮具里NC加工好之后给EDM放电用的。电极就是电火花放电加工的放电点,金属的,一般已铜为主,也有石墨的。

问题二:什么叫铜公? 铜公  在模具加工中,用于模具加工的方法有很多种,如铣床加工、磨床加工、加工中心加工、线切割加工、车床加工还有就是火花机的放电加工等等加工方法。铜公是火花机放电加工用的电极,用铜公作为电极的火花机放电加工,主要用于模具的形腔加工,也就是模具的核心关键部位。

铜公电极的分类

1:紫铜

紫铜来源广泛,具有良好的导电性,在较困难的条件下也能稳定加工,不容易产生电弧,加工损耗小;可获得较高的精度,用精细加工能达到优于Ra1.25μm的表面粗糙度。加工过程可保持尖锐的棱角、细致的形状。不足之处:机械加工性能不如石墨,磨削困难;机械强度低,不利于加工中的装夹、校正和维持较长时间的稳定加工;比重大,即增加了加工进给系统的负担,提高了对系统的要求,也不利于电极的安装、校正。

2:石墨

与紫铜电极相比的优点是:电极损耗小,粗加工时为紫铜的1/5~1/3;加工速度快,约为紫铜的1.5~3倍;机械加工性能好,切削阻抗为紫铜的1/4;加工效率为紫铜的2倍;比重轻,为紫铜的1/5,可用于大型电极;耐高温,热膨胀系数低,约为紫铜的1/4。不足之处:有脆性(在工作液中浸泡可减少脆性),易损坏;容易产生电弧烧伤现象;精加工损耗大,表面粗糙度只能达到Ra2.5μm;不易做成薄片和尖棱。

3:铜钨和银钨合金

铜钨电极因其有铜的高热导率、低损耗率、低热膨胀性和钨的高熔点,广泛应用于模具钢和碳化钨工件以及精密加工。铜钨和银钨合金的被切削性相当,加工稳定性好,电极损耗小,但价格贵,大约分别是铜的40倍、100倍。

4:黄铜

黄铜电极损耗大,加工速度也比紫铜慢,但放电时短路少,加工稳定。目前在火花机成形加工中一般不使用黄铜电极,但低速走丝线切割加工中仍使用。

5:钢

钢作为电极材料,机械加工性好,但加工稳定性较差,在钢冲模等加工中,加工速度为紫铜的1/3~1/2,电极损耗比为15%~20%,不能实现低损耗。

电极材料的基本要求

归纳以上常见电极材料的应用特性,电火花加工电极材料应具备以下基本性能要求:

1:高熔点,工具电极材料的熔点越高,电极损耗相对越小。

2:良好的导热性,可使放电产生的热量快速扩散,使加工介质的绝缘性能快速恢复,抑制拉弧烧伤现象的产生。

3:良好的导电性,易于产生电离,满足放电基本条件。

4: 较低的热膨胀系数,在电火花加工过程中,电极尺寸能保持稳定,确保加工精度。

5:良好的力学性能,易于加工和具有较好的变形抗力。

问题三:什么叫铜工(公),为什么要拆铜工(公)? 铜公是我们模具制造过程中,用来进行电火花加工放电。其材质是铜质的,只所以叫铜公,是因为其仅仅是用来配对用的铜质模型。

拆铜公是因为一些模具结构比较复杂,单向进行电火花加工无法达到加工要求,而进行拆分成几个部分进行加工。

问题四:求助铜公是什么 就是火花机用的电极! 广东那边的叫法! 哪为大大能告诉我手板是什么意思呀! 查看原帖>>

满意请纳

问题五:模具中说的铜公是什么? 比如说吧,冲压机冲压出来的产品就是用铜公做冲压头,它起到冲压成型的作用,不过还需要一个摸

问题六:铜公是什么?跟模具设计有什么关系?模具设计中一定要到用铜公吗 铜公就是电极,这是模具中的术语,由于地域的差异名称也不同;通常铜公材料础:石墨和紫铜!

按3d图CNC加工不到位的地方,那就需要EDM用电极放电加工!有的公司电极是有编程人员做3d电极、有的是搞模具设计人员做的,不过,只要你搞模具设计就尽可能的知道哪些地方需要电极,这样的话,就要求你懂一些加工方面的知识了!

我想,你一定是个新手中的新手,呵呵,每个人都有这过程的,只要你努力,你一定会成功的!加油吧!

问题七:拆铜公 拆电极 打火花分别是什么意思? 拆铜公 拆电极 打火花是一些行业(如模具制造)在电火花加工中一些术语的称呼。

铜公就是电极(因为电极常为紫铜)。拆铜公 拆电极 打火花都是指进行电火花加工。

电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。

进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 在放电的微细通道中瞬时集中大量的热能,温度可高达一万摄氏度以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体的金属微粒,被工作液带走。这时在工件表面上便留下一个微小的凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。紧接着,下一个脉冲电压又在两电极相对接近的另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除的金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多的金属,具有一定的生产率。 在保持工具电极与工件之间恒定放电间隙的条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应的形状来。因此,只要改变工具电极的形状和工具电极与工件之间的相对运动方式,就能加工出各种复杂的型面。

问题八:塑胶模具中,铜公的火花位是什么意思? 打个比方吧,用直径为10MM的铜公,单边的火花位为0.1MM,打出来的孔就是10.2MM,明白吗?谢谢

纳哦

问题九:这个铜公要什么锣 有一点R角应该没事若实在不行就只能铜打铜,就算全锣这个铜公的的加工费也得另算要不然就不值了

问题十:请问ug编程拆铜公中的拆铜公是什么意思,谢谢!!! 要是去过模具厂就知道,火花机打的电极就是铜公,拆铜公就是模具加工设计中需要打电极(也叫打火花)的部位做一个模块,一般是铣床,CNC,磨床等加工不到的地方需要做电极(拆铜公)

求CNC、数控车、线切割、火花机工作原理及产品加工特点

数控机床

数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。

特点

数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。

随着数控技术的发展,用数控系统的机床品种日益增多,有车床、铣床、镗床、钻床、磨床、齿轮加工机床和电火花加工机床等。

此外还有能自动换刀、一次装卡进行多工序加工的加工中心、车削中心等。

发展简史

1948年,美国帕森斯公司接受美国空托,研制飞机螺旋桨叶片轮廓样板的加工设备。

由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。

1949年,该公司在美国麻省理工学院(MIT)伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。

这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。

数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。

世界上主要工业发达国家都十分重视数控加工技术的研究和发展。

当时的数控装置用电子管元件,体积庞大,价格昂贵,只在航空工业等少数有特殊需要的部门用来加工复杂型面零件;1959年,制成了晶体管元件和印刷电路板,使数控装置进入了第二代,体积缩小,成本有所下降;1960年以后,较为简单和经济的点位控制数控钻床,和直线控制数控铣床得到较快发展,使数控机床在机械制造业各部门逐步获得推广。

我国于1958年开始研制数控机床,成功试制出配有电子管数控系统的数控机床,1965年开始批量生产配有晶体管数控系统的三坐标数控铣床。

1965年,出现了第三代的集成电路数控装置,不仅体积小,功率消耗少,且可靠性提高,价格进一步下降,促进了数控机床品种和产量的发展。

60年代末,先后出现了由一台计算机直接控制多台机床的直接数控系统(简称DNC),又称群控系统;用小型计算机控制的计算机数控系统(简称CNC),使数控装置进入了以小型计算机化为特征的第四代。

14年,研制成功使用微处理器和半导体存贮器的微型计算机数控装置(简称MNC),这是第五代数控系统。

第五代与第三代相比,数控装置的功能扩大了一倍,而体积则缩小为原来的1/20,价格降低了3/4,可靠性也得到极大的提高。

80年代初,随着计算机软、硬件技术的发展,出现了能进行人机对话式自动编制程序的数控装置;数控装置愈趋小型化,可以直接安装在机床上;数控机床的自动化程度进一步提高,具有自动监控刀具破损和自动检测工件等功能。

分类

经过几十年的发展,目前的数控机床已实现了计算机控制并在工业界得到广泛应用,在模具制造行业的应用尤为普及。

针对车削、铣削、磨削、钻削和刨削等金属切削加工工艺及电加工、激光加工等特种加工工艺的需求,开发了各种门类的数控加工机床。

数控机床种类繁多,一般将数控机床分为16大类:

数控车床(含有铣削功能的车削中心)

数控铣床(含铣削中心)

数控铿床

以铣程削为主的加工中心.

数控磨床(含磨削中心)

数控钻床(含钻削中心)

数控拉床

数控刨床

数控切断机床

数控齿轮加工机床

数控激光加工机床

数控电火花线切割机床

数控电火花成型机床(含电加工中心)

数控板村成型加工机床

数控管料成型加工机床

其他数控机床

组成

数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其他系统组成。

控制系统用于数控机床的运算、管理和控制,通过输入介质得到数据,对这些数据进行解释和运算并对机床产生作用;伺服系统根据控制系统的指令驱动机床,把来自数控装置的脉冲信号转换成机床移动部件的运动指令,使刀具和零件执行数控代码规定的运动;检测系统则是用来检测机床执行件(工作台、转台、滑板等)的位移和速度变化量,并将检测结果反馈到输入端,与输入指令进行比较,根据其差别调整机床运动;机床传动系统是由进给伺服驱动元件至机床执行件之间的机械进给传动装置;系统种类繁多,如:固定循环(能进行各种多次重复加工)、自动换刀(可交换指定刀具)、传动间隙补偿偿机械传动系统产生的间隙误差)等等。

数字控制

数控装置包括程序读入装置和由电子线路组成的输入部分、运算部分、控制部分和输出部分等。

数控装置按所能实现的控制功能分为点位控制、直线控制、连续轨迹控制三类。

点位控制是只控制刀具或工作台从一点移至另一点的准确定位,然后进行定点加工,而点与点之间的路径不需控制。

用这类控制的有数控钻床、数控镗床和数控坐标镗床等。

直线控制是除控制直线轨迹的起点和终点的准确定位外,还要控制在这两点之间以指定的进给速度进行直线切削。

用这类控制的有平面铣削用的数控铣床,以及阶梯轴车削和磨削用的数控车床和数控磨床等。

连续轨迹控制(或称轮廓控制)能够连续控制两个或两个以上坐标方向的联合运动。

为了使刀具按规定的轨迹加工工件的曲线轮廓,数控装置具有插补运算的功能,使刀具的运动轨迹以最小的误差逼近规定的轮廓曲线,并协调各坐标方向的运动速度,以便在切削过程中始终保持规定的进给速度。

用这类控制的有能加工曲面用的数控铣床、数控车床、数控磨床和加工中心等。

伺服机构

伺服机构分为开环、半闭环和闭环三种类型。

开环伺服机构是由步进电机驱动线路,和步进电机组成。

每一脉冲信号使步进电机转动一定的角度,通过滚珠丝杠推动工作台移动一定的距离。

这种伺服机构比较简单,工作稳定,容易掌握使用,但精度和速度的提高受到限制。

半闭环伺服机构是由比较线路、伺服放大线路、伺服马达、速度检测器和位置检测器组成。

位置检测器装在丝杠或伺服马达的端部,利用丝杠的回转角度间接测出工作台的位置。

常用的伺服马达有宽调速直流电动机、宽调速交流电动机和电液伺服马达。

位置检测器有旋转变压器、光电式脉冲发生器和圆光栅等。

这种伺服机构所能达到的精度、速度和动态特性优于开环伺服机构,为大多数中小型数控机床所用。

闭环伺服机构的工作原理和组成与半闭环伺服机构相同,只是位置检测器安装在工作台上,可直接测出工作台的实际位置,故反馈精度高于半闭环控制,但掌握调试的难度较大,常用于高精度和大型数控机床。

闭环伺服机构所用伺服马达与半闭环相同,位置检测器则用长光栅、长感应同步器或长磁栅。

关键零部件

为了保证机床具有很大的工艺适应性能和连续稳定工作的能力,数控机床结构设计的特点是具有足够的刚度、精度、抗振性、热稳定性和精度保持性。

进给系统的机械传动链用滚珠丝杠、静压丝杠和无间隙齿轮副等,以尽量减小反向间隙。

机床用塑料减摩导轨、滚动导轨或静压导轨,以提高运动的平稳性并使低速运动时不出现爬行现象。

由于用了宽调速的进给伺服电动机和宽调速的主轴电动机,可以不用或少用齿轮传动和齿轮变速,这就简化了机床的传动机构。

机床布局便于排屑和工件装卸,部分数控机床带有自动排屑器和自动工件交换装置。

大部分数控机床用具有微处理器的可编程序控制器,以代替强电柜中大量的继电器,提高了机床强电控制的可靠性和灵活性。

随着微电子技术、计算机技术和软件技术的迅速发展,数控机床的控制系统日益趋向于小型化和多功能化,具备完善的自诊断功能;可靠性也大大提高;数控系统本身将普遍实现自动编程。

发展方向

未来数控机床的类型将更加多样化,多工序集中加工的数控机床品种越来越多;激光加工等技术将应用在切削加工机床上,从而扩大多工序集中的工艺范围;数控机床的自动化程度更加提高,并具有多种监控功能,从而形成一个柔性制造单元,更加便于纳入高度自动化的柔性制造系统中。

CNC(数控机床)是计算机数字控制机床(Computer numerical control)的简称,是一种由程序控制的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,通过计算机将其译码,从而使机床执行规定好了的动作,通过刀具切削将毛坯料加工成半成品成品零件。

特点:与普通机床相比,数控机床有如下特点:1、加工精度高,具有稳定的加工质量; 2、可进行多坐标的联动,能加工形状复杂的零件; 3、加工零件改变时,一般只需要更改数控程序,可节省生产准备时间; 4、机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍); 5、机床自动化程度高,可以减轻劳动强度; 6、批量化生产,产品质量容易控制; 7、对操作人员的素质要求较低,对维护人员的技术要求较高。

数控车床是数字程序控制车床的简称,它集通用性好的万能型车床、加工精度高的精密型车床和加工效率高的专用型车床的特点于一身,是国内使用量最大,覆盖面最广的一种数控机床。

数控车床、车削中心,是一种高精度、高效率的自动化机床。配备多工位刀塔或动力刀塔,机床就具有广泛的加工艺性能,可加工直线圆柱、斜线圆柱、圆弧和各种螺纹、槽、蜗杆等复杂工件,可咨询:宁波众鑫数控机床厂。具有直线插补、圆弧插补各种补偿功能,并在复杂零件的批量生产中发挥 了良好的经济效果。

线切割: 电火花线切割简称线切割。它是在电火花穿孔、成形加工的基础上发展起来的。它不仅使电火花加工的应用得到了发展,而且某些方面已取代了电火花穿孔、成形加工。线切割机床已占电火花机床的大半。其工作原理如下图所示。绕在运丝筒4上的电极丝1沿运丝筒的回转方向以一定的速度移动,装在机床工作台上的工件3由工作台按预定控制轨迹相对与电极丝做成型运动。脉冲电源的一极接工件,另一极接电极丝。在工件与电极丝之间总是保持一定的放电间隙且喷洒工作液,电极之间的火花放电蚀出一定的缝隙,连续不断的脉冲放电就切出了所需形状和尺寸的工件。特点:

工作平稳、均匀、抖动小、加工精度高、表面质量好,但不宜加工大厚度工件。由于机床结构精密,技术含量高,机床价格高,因此使用成本也高。

电火花:进行电火花加工时,工具电极和工件分别接脉冲电源的两极,并浸入工作液中,或将工作液充入放电间隙。通过间隙自动控制系统控制工具电极向工件进给,当两电极间的间隙达到一定距离时,两电极上施加的脉冲电压将工作液击穿,产生火花放电。 在放电的微细通道中瞬时集中大量的热能,温度可高达10000℃以上,压力也有急剧变化,从而使这一点工作表面局部微量的金属材料立刻熔化、气化,并爆炸式地飞溅到工作液中,迅速冷凝,形成固体的金属微粒,被工作液带走。这时在工件表面上便留下一个微小的凹坑痕迹,放电短暂停歇,两电极间工作液恢复绝缘状态。 紧接着,下一个脉冲电压又在两电极相对接近的另一点处击穿,产生火花放电,重复上述过程。这样,虽然每个脉冲放电蚀除的金属量极少,但因每秒有成千上万次脉冲放电作用,就能蚀除较多的金属,具有一定的生产率。 在保持工具电极与工件之间恒定放电间隙的条件下,一边蚀除工件金属,一边使工具电极不断地向工件进给,最后便加工出与工具电极形状相对应的形状来。因此,只要改变工具电极的形状和工具电极与工件之间的相对运动方式,就能加工出各种复杂的型面。工具电极常用导电性良好、熔点较高、易加工的耐电蚀材料,如铜、石墨、铜钨合金和钼等。在加工过程中,工具电极也有损耗,但小于工件金属的蚀除量,甚至接近于无损耗。 工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油、去离子水和乳化液等。电火花机是一种自激放电,其特点如下: 火花放电的两个电极间在放电前具较高的电压,当两电极接近时,其间介质被击穿后,随即发生火花放电。伴随击穿过程,两电极间的电阻急剧变小,两极之间的电压也随之急剧变低。火花通道必须在维持暂短的时间(通常为10-7-10-3s)后及时熄灭,才可保持火花放电的“冷极”特性(即通道能量转换的热能来不及传至电极纵深),使通道能量作用于极小范围。通道能量的作用,可使电极局部被腐蚀。 利用火花放电时产生的腐蚀现象对材料进行尺寸加工的方法,叫电火花加工。 电火花加工是在较低的电压范围内,在液体介质中的火花放电。 电火花的加工 按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方式分为五类:利用成型工具电极,相对工件作简单进给运动的电火花成形加工;利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工;利用金属丝或成形导电磨轮作工具电极,进行小孔磨削或成形磨削的电火花磨削;用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工;小孔加工、刻英表面合金化、表面强化等其他种类的加工。电火花加工能加工普通切削加工方法难以切削的材料和复杂形状工件;加工时无切削力;不产生毛刺和刀痕沟纹等缺陷;工具电极材料无须比工件材料硬;直接使用电能加工,便于实现自动化;加工后表面产生变质层,在某些应用中须进一步去除;工作液的净化和加工中产生的烟雾污染处理比较麻烦。

特点:火花加工的主要用于加工具有复杂形状的型孔和型腔的模具和零件;加工各种硬、脆材料,如硬质合金和淬火钢等;加工深细孔、异形孔、深槽、窄缝和切割薄片等;加工各种成形刀具、样板和螺纹环规等工具。